How will bioinformatics influence metabolic engineering?

نویسندگان

  • J S Edwards
  • B O Palsson
چکیده

Ten microbial genomes have been fully sequenced to date, and the sequencing of many more genomes is expected to be completed before the end of the century. The assignment of function to open reading frames (ORFs) is progressing, and for some genomes over 70% of functional assignments have been made. The majority of the assigned ORFs relate to metabolic functions. Thus, the complete genetic and biochemical functions of a number of microbial cells may be soon available. From a metabolic engineering standpoint, these developments open a new realm of possibilities. Metabolic analysis and engineering strategies can now be built on a sound genomic basis. An important question that now arises; how should these tasks be approached? Flux-balance analysis (FBA) has the potential to play an important role. It is based on the fundamental principle of mass conservation. It requires only the stoichiometric matrix, the metabolic demands, and some strain specific parameters. Importantly, no enzymatic kinetic data is required. In this article, we show how the genomically defined microbial metabolic genotypes can be analyzed by FBA. Fundamental concepts of metabolic genotype, metabolic phenotype, metabolic redundancy and robustness are defined and examples of their use given. We discuss the advantage of this approach, and how FBA is expected to find uses in the near future. FBA is likely to become an important analysis tool for genomically based approaches to metabolic engineering, strain design, and development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse modeling using multi-block PLS to determine the environmental conditions that provide optimal cellular function

MOTIVATIONS Tissue engineering constitutes an important field with its potential of addressing the current shortage in organ availability. To successfully develop tissue-engineered organs, it is crucial to understand how to maintain the cells under conditions that maximize their ability to perform their physiological roles, regardless of the environment, whether the cells are part of an extraco...

متن کامل

Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models

Advances in sequencing technology are resulting in the rapid emergence of large numbers of complete genome sequences. High-throughput annotation and metabolic modeling of these genomes is now a reality. The high-throughput reconstruction and analysis of genome-scale transcriptional regulatory networks represent the next frontier in microbial bioinformatics. The fruition of this next frontier wi...

متن کامل

Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation

MOTIVATION The simulation of biochemical kinetic systems is a powerful approach that can be used for: (i) checking the consistency of a postulated model with a set of experimental measurements, (ii) answering 'what if?' questions and (iii) exploring possible behaviours of a model. Here we describe a generic approach to combine numerical optimization methods with biochemical kinetic simulations,...

متن کامل

Robust design of microbial strains

MOTIVATION Metabolic engineering algorithms provide means to optimize a biological process leading to the improvement of a biotechnological interesting molecule. Therefore, it is important to understand how to act in a metabolic pathway in order to have the best results in terms of productions. In this work, we present a computational framework that searches for optimal and robust microbial str...

متن کامل

In silico prediction of Escherichia coli metabolic engineering capabilities for 1-butanol production

Bashir Sajo Mienda*, Mohd Shahir Shamsir, Faezah Mohd Salleh and Rosli Md. Illias Bioinformatics Research Group (BIRG), Biosciences and Health Sciences Department, Faculty of Biosciences and Medical Engineering, Universiti Teknologi, Malaysia Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia Department of Biologic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 58 2-3  شماره 

صفحات  -

تاریخ انتشار 1998